
333 Section 6 - C++ Templates, STL
Welcome back to Section! We’re glad that you’re here :)

C++ Templates

Exercise 1) Templates & Things
Fill in the blanks below for the definition of a simple templated struct Node for a singly-linked list. The
struct has two public fields: a value, which is a pointer of template type T pointing to a heap
allocated payload, and a next, which is a pointer to another struct Node. The struct also has a
two-argument constructor that takes a T pointer for value and another Node<T> pointer for next.

template <typename T>
struct Node {

Node(T* val, Node<T>* node): value(val), next(node) {}

~Node() { delete value; }

T* value;
Node<T>* next;

};

Remember that struct in C++ by default has its members being public, so no need to specify the
access modifiers explicitly here.

C++’s Standard Library

Exercise 2) Standard Template Library
Complete the function ChangeWords below. This function has as inputs a vector of strings, and a
map of <string, string> key-value pairs. The function should return a new vector<string> value (not a
pointer) that is a copy of the original vector except that every string in the original vector that is found
as a key in the map should be replaced by the corresponding value from that key-value pair.

Example: if vector words is {"the", "secret", "number", "is", "xlii"} and map subs is
{{"secret", "magic"}, {"xlii", "42"}}, then ChangeWords(words, subs) should return a
new vector {"the", "magic", "number", "is", "42"}.

Hint: Remember that if m is a map, then referencing m[k] will insert a new key-value pair into the map
if k is not already a key in the map. You need to be sure your code doesn’t alter the map by adding
any new key-value pairs. (Technical nit: subs is not a const parameter because you might want to
use its operator[] in your solution, and [] is not a const function. It’s fine to use [] as long as you
don’t actually change the contents of the map subs.)

Write your code below. Assume that all necessary headers have already been written for you.

using namespace std;
vector<string> ChangeWords(const vector<string> &words,

map<string,string> &subs) {

vector<string> result;
for (auto &word : words) {

if (subs.find(word) != subs.end()) {
result.push_back(subs[word]);

} else {
result.push_back(word);

}
}
return result;

}

Exercise 3) STL Debugging [extra]
Here is a little program that has a small class Thing and main function (assume that necessary
#includes and using namespace std; are included).

class Thing {
public:
Thing(int n): n_(n) { }
int getThing() const { return n_; }
void setThing(int n) { n_ = n; }

private:
int n_;

};

int main() {
Thing t(17);
vector<Thing> v;
v.push_back(t);

}

This code compiled and worked as expected, but then we added the following two lines of code (plus
the appropriate #include <set>):

set<Thing> s;
s.insert(t);

The second line (s.insert(t)) failed to compile and produced dozens of spectacular compiler error
messages, all of which looked more-or-less like this (edited to save space):

In file included from string:48:0, from bits/locale_classes.h:40, from
bits/ios_base.h:41,from ios:42,from ostream:38, from /iostream:39,from
thing.cc:3: bits/stl_function.h: In instantiation of 'bool
std::less<_Tp>::operator()(const _Tp&, const _Tp&) const [with _Tp =
Thing]': <<many similar lines omitted>> thing.cc:37:13: required from here
bits/stl_function.h:
387:20: error: no match for 'operator<' (operand types are 'const Thing'
and 'const Thing') { return __x < __y; }

What on earth is wrong? Somehow class Thing doesn’t work with set<Thing> even though insert is
the correct function to use here. (a) What is the most likely reason, and (b) what would be needed to
fix the problem? (Be brief but precise – you don’t need to write code in your answer, but you can if that
helps make your explanation clear.)

STL has to compare them using operator<. Add an appropriate operator< as either a member
function in Thing, or as a free-standing function that compares two Thing& parameters.

T9 Example
Before smartphones, mobile phones used a predictive text system called T9, based on the mapping of
a single numpad key to any of the corresponding letters shown in the image to the right. Note that the
‘1’, ‘*’, and ‘#’ keys won’t be used and that ‘0’ corresponds to [Space].

Example: a user would type ‘8’, then ‘4’, then ‘3’ to get the word “the”, though it could also predict
longer words like “they” or “there”. We will use C++ STL to generate our T9 predictive dictionary!
The top of our file is shown below so that you are aware of what is globally available:

#include <iostream>
#include <string>
#include <vector>
#include <map>
using namespace std;

Our T9 class also has a field map<char, char> letters_to_keys, which maps letters to their
corresponding number on the T9 keyboard. For this exercise, assume this map has already been
initialized for you.

a) Complete the function to add a mapping from each prefix to the string itself to predictions.
Assume the passed-in word is always lowercase. You may find the string member function
string substr(size_t pos, size_t len) useful, which returns the substring of length len
starting from position pos

map<string, vector<string>> predictions; // global prediction map.
void AddPrefixesToPredictions(const string& word) {
string prefix;

for (auto& c : word) {
prefix += letters_to_keys[c];
predictions[prefix].push_back(word);

}
}

b) Complete the function below to print out the contents of predictions. For example, if we’ve
added "a" and "ax", it should print out the following (note the formatting):

2 : a, ax,
29 : ax,

void PrintPredictions() {
// loop over every prediction pair
for (auto& pred_pair : predictions) {
cout << pred_pair.first << " : ";

// loop over every vector entry
for (auto& w : pred_pair.second) {
cout << w << ", ";

}
cout << endl;

}
}

